
Behavior Driven 
Development 

(BDD)
With Mocking

An amazing set of agile tools that 
helps to create kick ass software

Eric Hosick (erichosick)



Remeber
●Throughout this lecture, please remember:

Agile doesn't fix problems in your 
company. It simply brings them to 

light quicker.
As such:

Don't be Quick to Blame Agile



Software Without Requirements???

?



Question...
Agile Manifesto: [Favor] working software over 

comprehensive documentation.

We need requirements. They describe the 
features/behavior of the program being 
developed.

If we need requirements, then why not write 
requirements in a way that they can be verified 
similar to source code?



Behavior Driven Development

What is it? The name gives it all away...
●Behavior/Feature

○ What your software will do described through requirements 
(mocking,stories,begging).

●Driven
○ To cause or guide the movement of something.

●Development
○ The creation of software through engineering and coding.

●Behavior Driven Development
○ The development of software guided directly by described 

behavior and features (and mocking).



Given, When, Then

●Given Eric is authorized
●When he visits the "About Me" Page
●Then he should still be authorized
●And the name "Eric" is shown



Discovering Behavior
●Mockup the system using mocking software 

(Balsamiq for example).
○Create user stories from mockup and or
○Create mockup from user stories
○Hack away on Research and Development but keep 

that code out of production.
●Discover ALL behavior and features of the mockup and 

write Scenarios with Gherkin
●Only then should you write code being pushed to 

production.

GUI centric software



Example Mockup
 

http://balsamiq.wpengine.netdna-cdn.com/images/samples/mytunez.png



Why It is So Cool

●Aligns With Agile Manifesto:
○Favor code over documentation

●Forces Product Owner To Focus
○Mock-out and verify what stakeholders want (Lean 

Development) before writing a line of code.
●Forces Developer To Focus

○Developer codes exactly what is needed.
●Requirements and code Are "Verified"

○Continuous integration of requirements
○Continuous integration of code



Why It is So Cool - Part 2

●Describes Your System Twice
○ The behavior of your system is written in a programming 

language.
○The behavior of your system is written in a DSL.
○Makes your software more robust.

● Same Scenarios In Different Languages
○Ruby (Cucumber), C# (SpecFlow), PHP (Behat), Java 

(???)
● Iterative Development

○ Implement scenarios and push to production as fast as 
possible.



Why It is So Cool - Part 3

● 100% Coverage of the Behavior of Your Software
○Easy to refactor
○Any bugs caused by changes are found out: if you 

changed the behavior of your program you will find out!
○ See Describes your system twice.

YOU CAN'T BREAK YOUR 
PROGRAM!



Arguments Against BDD

●Code Isn't Dry
○ BDD is too wordy. But! Depends on the language and depends on 

the robustness of your code.
●Product Owner Can's Use BDD

○ But - The Domain Specific Language can be written to a level 
appreciated by the Product Owner.

○ If they can't explain what they want to you in their own language, 
you need a new product owner.

●Assumes you Know the Problem
○ But - If you don't know the problem then how can you code a 

solution?
○ Doing R&D - Don't use BDD. Have fun and Hack.
○ Sticking that code in production? Not without BDD.



Arguments Against BDD Part 2

●Don't Use In Startup - No Upfront Value
○ But! BDD forces the startup to focus on their core products and 

work closely with customers.
○ Remove code before it is even written!

●Product Owner Can's Use BDD
○ But - The Domain Specific Language can be written to a level 

appreciated by the Product Owner.
○ If they can't explain what they want to you in their own language, 

you need a new product owner.
●Assumes You Know the Problem

○ But - If you don't know the problem then how can you code a 
solution?

○ Doing R&D? - Don't use BDD. Have fun and Hack.
○ Sticking code in production? Not without BDD.



Arguments Against BDD Part 3

●Have to Change the BDD A Lot
○ If you are changing the BDD a lot does that mean BDD is 

broken? OR
○ Does that mean the Product Owner had you write something they 

really didn't want?



Questions?

source: http://www.flickr.com/photos/katemonkey/122489910/


