
Addressing Non-Functional
Requirements with Agile Practices
Mario Cardinal
Software Architect

Version: Oct 29th

Agile is Like Teen Sex Because…

• Everyone wants to do it
• Many say they’re doing it
• Everybody else seems to be doing more than you
• Very few of you/your friends are doing it correctly
• Your start getting a bad reputation when you

spend too much time ‘Doing it’

Source: agile101.net

Who Am I?
• Independent senior consultant specializing in

software architecture
• www.mariocardinal.com

Agenda
1. Non-functional requirements

• Quality expectations
2. Functional requirements and agile processes

• User Story and scenario
3. Non-functional requirements and agile processes

• Improving quality during construction
• Improving quality during execution

Non-Functional Requirements
What are they?
• Specify "how well" the "what" must behave
• Impose constraints that typically cut across

functional requirements
• Constraint to be obeyed either during the

implementation by the builders (internal quality) or at
run time by the software (external quality).

Non-Functional Requirements
It is all about quality
• Also known as "technical requirements", “quality

attributes” or "quality of service requirements“
• Can be divided into two main categories:

1. Internal qualities such as maintainability, modifiability
and testability, which are barely visible by
stakeholders but simplify how to build the software

2. External qualities such as performance,
correctness, security and usability, which carry out the
software's functions at run time, and as such, are not
only visible by stakeholders but also highly desirable

Non-Functional Requirements
Knowledge is not experience
• I do not intend to tell you how to satisfy the many

non-functional requirements
• It is a skill that one acquires with experience

• I will explain how to obtain the desired quality by
imposing constraints

Non-Functional Requirements
Impose constraints to guide your work
• A constraint is a condition to make the

requirements in line with quality expectations
• A constraint sets a limit to comply with
• It helps determine whether you have satisfied the

non-functional requirements

Non-Functional Requirements
Constraints crosscut functional requirements

Non-Functional Requirements
Reduce the functional scope to a scenario
• A constraint should be satisfied in a finite period of

time
• A constraint is addressed side by side with its

linked functional scope

Functional Requirements
Express goals with user stories
• A user story is a short description written in

everyday language that represents a discrete
piece of demonstrable functionality
• It is a desirable outcome by a stakeholder

• Classic template
• “As a < role>, I want <goal> so that <benefit>”

Functional Requirements
Example: User stories for a Transit Authority
• As a <student>, I want <to buy a pass valid

only on school days> so that I can <go to
school>

• As a <worker>, I want <to buy a monthly pass>
so that I can <go to work>

Functional Requirements
Confirm success criteria with scenarios
• While planning the iteration, the details of each

story are confirmed with success criteria
• Success criteria establish the conditions of acceptance
• Success criteria are concrete examples

• It says in the words of the stakeholders how they plan to verify
the desirable outcome

• Success criteria enables the team to know when they
are done

• Express success criteria with scenarios

• A scenario is a concrete example written in
everyday language

• It describes a significant exercise that is required
for the fulfillment of a user story

Functional Requirements
Illustrate User Story with scenarios

Functional Requirements
Express scenarios with formality

Given one precondition
And another precondition
And yet another precondition

When an action occurs
Then a consequence

And another consequence

Functional Requirements
Express scenarios with formality

Given the shopping cart contains a monthly pass
When buyer checkout the shopping cart
Then the price is 146 dollars

Functional Requirements
Illustrate collaboratively in a two-step process

Functional Requirements
Automate confirmation with scenarios

Requirements
Specification

ConfirmsIllustrates

Executes
TestScenario

User Story

Functional Requirements
Store requirements in a database

User Story

User Story

Parent/Child Links

Scenario

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Scenario

Functional Requirements
Use an Agile ALM platform
• Microsoft TFS, IBM Jazz, Jira, Rally, VersionOne, …

• Work Items
• User Stories, Tasks
• Bugs, Test Cases

• Version Control
• Check-out/in
• Label
• Shelve
• Branch/Merge

• Automated Build
• Reports & Metrics

Non-Functional Requirements
Should we express constraint with User Story?
• Cannot be satisfied in a finite period of time

• The “what” that needs to be restricted is not concrete
enough

• The functional scope is fuzzy, the story belongs to the
iteration

• Can easily induce technical debt
• Once the story is completed, you must put it back in the

backlog to make it available again for a future iteration
• Complicates the management of the backlog unduly

Non-Functional Requirements
Two types of constraint
• Internal quality

• Rule is a “constraint” that sets a limit to comply during
software construction

• External quality
• Restriction is a “constraint” that sets a limit to comply

during software execution

Internal Quality
What is it?

Non-Functional
Requirement

Definition

Simplicity Ease to understand or explain

Maintainability Ease to change and evolve with minimal effort

Testability Ease to confirm conformance by observing a reproducible behavior

Portability Ease to reuse for multiple platforms

Extensibility Ease to takes into consideration future growth

Internal Quality
Impose constraints using “Rules”
• Rule is a constraint that sets how software

construction is built
• Rules are global and applies to each scenario

Internal Quality
Set rules with explicit quality objectives

Non-Functional
Requirement

Rule

Simplicity
Naming convention: Practices that ensure code is its own best documentation
by allowing useful information, such as programming constructs, to be deduced
from the names.

• The « naming convention » guide the team during
software construction

Internal Quality
Iteration 0: Produce a “Naming convention”

Element Case Sample More information
Class name Pascal ClassName Class names should express the abstraction the class is

implementing.
Interface
name

Pascal IInterfaceName Interface names should express the contract the interface is
implementing. To make explicit that the contracts are
interfaces, the names are prefixed with a “ I ”.

Method
names

Pascal MethodName Method names should express the unit of functional cohesion
the routine is implementing.

Member
variables

Camel memberVariable Variable names should express whatever the variable
represents. Inside a method, always use the instance ‘this.’ in
front of the member variable to make explicit the class
membership of the variable.

Parameter
variables

Camel parameterVariable Variable names should express whatever the variable
represents. If a parameter and a member variable express the
same concept use the same name for both variables.

Local
variables

Camel localVariables Variable names should express whatever the variable
represents.

Internal Quality
Store rules in your Agile ALM platform

User Story

User Story

Parent/Child Links

Scenario

Rule

Rule

Rule

Rule

Scenario

Rule

Rule

Global list

Internal Quality
Confirm rules with collaborative construction
• Pair programming

• Two teammates work together at one workstation
• Driver

• Type at the keyboard
• Focus his attention on the task at hand
• Use the observer as a safety net and guide

• Observer
• Look at what is produced by driver
• Consider the constraints imposed by the rules
• Come up with ideas for improvements

• The two teammates switch roles frequently

Internal Quality
Confirm rules with collaborative construction
• Peer review (aka formal inspection during construction)

• Well-defined roles
• Moderator, author, reviewers, scribe

• Planning
• Inspection isscheduledby moderator(fromcode analysismeasure)

• Preparation
• Reviewer works alone to scrutinize the work product under review
• Reviewer uses the rule definition to stimulate their examination

• Inspection
• Moderator chooses someone other than the author to present the work product
• Authorisa « flyon the wall» and scriberecords reworks as they are detected
• Constructive feedbacks, «I wouldreplace with…», Emphasisison improvingknowledge

• After inspection
• Moderator is responsible for seeing that all rework is carried out promptly by the author

Internal Quality
Other examples of explicit quality objectives

Non-Functional
Requirements

Rule (Global for each scenario)

Simplicity Code layout convention: Practices that ensure code is its own best documentation by using
code layout that shows the logical structure.

Maintainability Continuous Integration: Practices of applying quality control for each new checked in code by
verifying if it integrate with success in the development branch.

Testability Red-Green-Refactor: Practice that promotes the notion of writing test first when programming
a piece of code and that relies on the repetition of a very short development cycle divided into
three stages (the red, the green and the refactor stage).

Portability Multi-target compiling: Practices that verifies the integrated code compile on every platform.

• Each scenario is not « Done » until each rule is
confirmed

Internal Quality
Rules and User Story

Non-Functional
Requirements

Rule (Global for each User Story)

Maintainability Branching and merging : Practices to merge with the main branch (and tagged
appropriately for traceability) source code from the development branch.

Portability Multi-target deploying: Practices that verifies the automated build can deploy on every
platform.

• Each user story is not « Done » until each rule is
confirmed

External Quality
What is it?

Non-Functional
Requirement

Definition

Correctness Ability with which the software respects the specification.

Performance Ease with which the software is doing the work it is supposed to do. Usually
it is measured as a response time or a throughput.

Reliability Ability with which the software performs its required functions under stated
conditions for a specified period of time.

Robustness Ability with which the software copes with errors during execution.

Scalability Ability with which the software handles growing amounts of work in a
graceful manner.

Security Degree to which the software protects against threats.

Usability Ease with which the software can be used by specified users to achieve
specified goals.

External Quality
Differences with internal quality rules
• The constraints set a limit to comply during

software execution
• The constraint is a restriction

• It is not a rule

External Quality
Differences with internal quality rules
• Restriction is specific for one scenario
• Restriction has a measurable quality objective
• Restriction has recovery action(s)
• Restriction is confirmed by test(s)

External Quality
Restrictions should be SMART
• Specific

• It should target a piece of functionality that is small, consistent and
simple

• Measurable
• It imposes a limit that is measurable, otherwise how would you

know when you’ve addressed it
• Attainable

• It is recognized as achievable by the team
• Relevant

• It is directly related, connected, and pertinent to the non-functional
requirement

• Traceable
• It is linked with a requirement and a target that justifies why it exists

External Quality
Specific for one scenario

• Set restrictions with measurable quality objectives

External Quality
Confirm restrictions with tests
• Correctness: Acceptance testing
• Performance: Response time or throughput testing
• Reliability: Testingover a period of time (memory leaks ???)
• Robustness: Simulatebroken component
• Scalability: Load testing (withgrowing amounts of work)
• Security: Intrusion testing
• Usability: Testing with real users

External Quality
Confirm restrictions with tests

User Story

User Story

Parent/Child Links

Scenario

Rule

Rule

Rule

Rule

Restriction

Test/Test By Links

Test Case

Test Case

Bug

Bug

Bug

Restriction Test Case Bug

Scenario

External Quality
Less is more, testing restriction is costly
• Negotiate with stakeholders to reduce number of

restrictions
• Is it « really, really » a desirable outcome?

• Try to target a specific iteration for testing a non-
functional requirement
• Benefit: Transform from a recurrent concern to a one-

time concern
• Benefit: Handle the concern with a user story

Next Steps
• Add ‘Scenario’, ‘Rule’ and ‘Restriction’ Work Item

Type to your Agile ALM platform
• Improve internal quality using rules

• Create global rules for scenario and user story
• Enforce rules with collaborative construction

• Improve external quality using restrictions
• Create specific restrictions for each scenario
• Enforce restrictions with tests

Resources
Book

• Title: Agile Specification
• Author: Mario Cardinal
• Publisher: Addison-Wesley
• Publication Date: Spring 2012

Shameless plug
Training
• Adopting Agile with Microsoft Tooling

• Learn how to customize your Team Foundation Server
to effectively adopt an agile process

• Learn how to efficiently mix Scrum, Kanban and
executable specification

• Ottawa: Nov 2nd

• Quebec: December 14th (en francais)
• http://mariocardinal.com

Q & A

